Preoperative assessment in the pregnant patient

Juan Gustavo Vázquez Arredondo M.D. Juan Gustavo Vázquez Rodríguez M.D.

interventions or invasive procedures related to pregnancy or non-obstetric conditions. Preoperative assessment is a priority to identify risk factors and prevent adverse maternal-fetal complications. The internist, the cardiology specialist, the intensive care physician and the anesthesiologist are responsible for preparing the preoperative assessment and issuing recommendations.

Background: Pregnant women have the real possibility of undergoing surgical

This review includes the physiological changes of pregnancy and their clinical implications regarding the anesthetic technique and the surgical approach, the most relevant aspects of preeclampsia-eclampsia and cesarean section, the preoperative management of the patient who is a candidate for pregnancy-related surgery. and also with non-obstetric surgery. The evaluation scales that are most frequently used are reviewed, mainly those that take into account the condition of the pregnancy and also the safety of the drugs with respect to the fetal risk.

Keywords: Pregnancy; Preoperative assessment; Obstetric surgery and pregnancy; Non-obstetric surgery and pregnancy; Maternal-fetal outcome, High-risk pregnancy.

Mexico City, Mexico

Review Article

Obstetrics & Gynecology

PHYSIOLOGICAL CHANGES OF PREGNANCY AND THEIR CLINICAL INTERPRETATION

mportant maternal changes occur during to optimize fetal pregnancy growth and development and to ensure successful birth outcomes, but they may also increase maternal risk during anesthesia and surgery. The multidisciplinary team must be aware of the changes in order to properly interpret them, identify the true complications, and establish timely management to reduce maternal and fetal morbidity and mortality.

Cardiovascular changes

In pregnancy, cardiac output increases by 40% and plasma volume also increases, which produces dilutional anemia. The heart rate increases by 10% and vasodilation occurs with a reduction in blood pressure. It is a hyperdynamic state that becomes more evident as the placenta develops because it behaves like a large arteriovenous fistula because its structure lacks resistance vessels. The hypotensive response is increased by general and spinal anesthesia.

Normal cardiovascular changes are reflected in clinical, electrocardiographic, radiological, and echocardiographic findings. The data are: more intense arterial pulses, displacement of the cardiac apex shock up and to the left, splitting of the second heart sound, systolic murmur in the pulmonary and tricuspid focus, greater intensity of pre-existing murmurs, systolic-diastolic murmur heard in one or more both breasts ("soufflé"), electrical axis rotation to the left, left atrial dilatation, inverted Q and T waves in DIII, Q wave in aVF, inverted T wave in V1 to V3, cardiac widening on chest x-ray and posterior pericardial effusion in minimal amounts as an echocardiographic finding.

Changes may reveal heart failure, congenital heart disease, cardiomyopathy of pregnancy, endocarditis, lupus, or pulmonary thromboembolism. Imaging studies should be used to document the differential diagnosis. Maternal exposure for a chest X-ray does not increase the teratogenic risk and the echocardiogram can be repeated several times during pregnancy. ¹

Respiratory changes

The growing uterus pushes up on the diaphragm restricting its movements reducing functional residual capacity by 20% when the patient is standing and by 50% to 70% when in recumbent position. Minute volume and tidal volume increase by approximately 35% which predisposes to respiratory alkalosis, but this does not occur due to the compensatory effect of physiological bicarbonaturia. Pulmonary changes produce a more rapid induction

From the Department of Internal Medicine. High Specialty Medical Unit. Specialty Hospital "Dr. Antonio Fraga Mouret" and Intensive Care Unit. High Specialty Medical Unit. Gynecology and Obstetrics Hospital No. 3. National Medical Center "La Raza". Mexican Institute of Social Security. Mexico City. Received on June 19, 2025. Accepted on June 23, 2025. Published on June 26, 2025.

Scales	Year	Description	Pregnancy dates
Goldman scale 10	1971	Global evaluation for non-cardiac surgery	No
ACC/AHA scale 11,12	2007	Cardiology evaluation for patients undergoing non-	No
	2014	cardiac surgery	
Lee index 13	1999	Evaluation scale to predict cardiologic complications in	No
		non-cardiac surgery.	
CARPREG study 14	2001	Predictive index of adverse cardiac events in women with	Yes
CARPREG II scale 15	2018	pregnancy and heart disease	
NYHA functional	1928	Functional classification of patients with heart failure	No
classification 16	2014	-	
ASA physical status	1941	Classification of preoperative physical status in the open	Yes
classification 17,18	2020	population and pregnant women	
Caprini scale 19	2001	Thromboembolic disease prophylaxis	Yes
Detsky index ²⁰	1986	Goldman simplified multifactorial cardiac risk index for	No
		patients undergoing noncardiac surgery	
Wells scale 21	1997	Estimates the probability of suffering deep vein	No
		thrombosis	
Ginebra scale 22,23	2001	Clinical index to determine the probability of pulmonary	No
	2006	thromboembolism	

ACC: American College of Cardiology, AHA: American Heart Association, CARPREG: Cardiac disease in pregnancy, NYHA: New York Heart Association, ASA: American Society of Anesthesiologists,

Table 1. Perioperative assessment scales and pregnant patients

with inhalation anesthesia. Tachypnea is usual, but if sudden accelerations in ventilation occur, pulmonary thromboembolism must be ruled out.

During surgery, women with a third-trimester pregnancy should be placed in the left lateral decubitus position to avoid compression of the vena cava and with a 30° lateral Fowler tilt to improve lung mechanics and prevent intraoperative aspiration. Gentle elastic bandaging of the legs is mandatory because most thrombi originate in the soleus arch veins during surgery and manifest as thromboembolism when the physician orders the patient to stand up to walk.

Endotracheal intubation fails in one of 300 cases with pregnancy due to airway edema. Delayed ventilatory support from difficult intubation, reduced functional residual capacity, and reduced oxygen delivery to tissues from dilutional anemia may have catastrophic consequences for the maternal-fetal binomial. Anesthesiologists use the Mallampati classification of 4 classes to assess the airway. Class 3 is the case of a patient sticking out the tongue in which the soft and hard palate and the base of the uvula are visible, but the tonsils are not. When only the hard palate is seen it indicates a higher probability that the ventilation mask may be insufficient and that endotracheal intubation will be difficult. For patients in this class, all respiratory protection measures must be taken, including the permanent supply of oxygen and the use of smaller endotracheal tubes with flexible guides with the intubation maneuver directed with fiber optic equipment. Despite conventional fasting, the pregnant patient should be considered with a full stomach due to slow gastric emptying. 12

Urological and renal changes

In pregnancy, pyelocalyceal dilatation and vesicoureteral reflux occur which predispose to urinary infection. Glomerular filtration increases up to 50% due to the increased blood supply, reduction in blood pressure, and greater intrarenal capacitance that produces an increase in renal dimensions and a state of physiological hyperfiltration that leads to lower blood values of urea, nitrogen from urea, creatinine and uric acid compared to the open population.

Dilutional hypoalbuminemia occurs and the serum calcium level falls, but the ionized calcium level remains normal. The tubular supply of fluid and solutes is increased so that the proximal convoluted tubular systems for recovering amino acids, protein, glucose, and bicarbonate are overwhelmed. Glycemic control according to the urinary result using test strips is not recommended during pregnancy. The same is true for documenting proteinuria. ¹

Hematological changes

The total mass of red blood cells increases, but is exceeded by the increase in plasma volume causing dilutional anemia. It should be kept in mind that pregnancy is a hypercoagulable state because the synthesis of coagulation factors I, II, V, VII, VIII, X, and XII is increased and the components of the fibrinolytic system are reduced.

The data support the use of low molecular weight heparin in prophylactic doses to prevent deep vein thrombosis in the perioperative period. The use of unfractionated heparin is not recommended because the safety profile of low molecular weight heparin is superior in pregnancy, it has a lower risk of bleeding, thrombocytopenia and osteoporosis, it has better

Predictor	Score
History of cardiac events or arrhythmia	3
NYHA class III/IV or cianosis	3
Mechanical heart valve	3
Decreased ventricular function	2
History of mitral or aortic valve dysfunction	2
Pulmonary hypertension	2
Coronary artery disease	2
Aortic disease	2
Late pregnancy assessment	1
No previous interventions for existing cardiac problems	1

Score	Percentage of adverse cardiac
	events
0 to 1	5%
2	10%
3	15%
4	22%
>4	41%

NYHA: New York Heart Association

Table 2. Risk index for heart disease in pregnancy CARPREG II

bioavailability, it does not cross the placenta, it has less inactivation by tissue proteins due to their smaller molecular size and their half-life and volume of distribution increase in pregnancy. The blood group and Rh of the mother and the fetus must be known to regulate the administration of immunoglobulin anti-D as a preventive maneuver for maternal-fetal isoimmunization.

Parenteral iron supplementation using any of the current hypoallergenic compounds is justified to correct iron deficiency anemia with hemoglobin <8 g/dL in patients with a pregnancy greater than 34 weeks and the transfusion of only one unit of erythrocytes is indicated when the hemoglobin concentration it is <6 g/dL in a patient without bleeding. In the patient with bleeding, there is no hemoglobin level as a cut-off point for transfusion. ¹

Gastrointestinal changes

During pregnancy, gastroesophageal reflux and the opportunity for bronchial aspiration are more frequent because the tone of the lower esophageal sphincter is reduced and gastric motility is slow. Fasting for 8 hours, elevation of the head of the patient's bed by 15°, and the use of prokinetic and antacid drugs, but without aluminum and magnesium contained in a preparation such as suspension or gel, are justified to prevent chemical pneumonitis from vomiting and bronchial aspiration. The pregnant patient must be considered at all times as a patient with a full stomach, so intubation must be rapid using

a smaller caliber tube with the assistance of a flexible guide or with fiber optic equipment.

In pregnancy, liver function tests show increased values of the enzyme alkaline phosphatase from its synthesis of placental origin, the changes include a reduction in the concentrations of bilirubin, albumin and globulin due to plasmatic dilution. ¹

Endocrine changes

The thyroid gland increases in size and becomes palpable; this finding should not necessarily be interpreted as a pathological goiter. A thyroid-carotid murmur may be detected on local auscultation. The blood values of thyroid hormones have quarterly variations, so the results must be compared with the pre-established standards. The chorionic gonadotropin hormone increases in the initial stage of pregnancy and then decreases, it is involved in hyperemesis gravidarum. Because its structure is similar to that of thyroid-stimulating hormone, cases of hyperemesis and hyperthyroidism must be differentiated with true organic processes that are resolved only with surgery or some type of intervention.

At the beginning of pregnancy, the cells of the pancreatic islets hypertrophy and the insulin level increases, so hypoglycemia can occur. Energy intake with glucose should be considered when intravenous solutions are prescribed in a patient with prolonged fasting. In later stages, maternal peripheral resistance to insulin occurs and gestational diabetes can emerge in cases with risk factors and a predisposing genetic

Class	Definition	Examples in obstetrics	
I	Normal healthy patient	None	
П	Patient with mild systemic disease	Normal pregnancy, well controlled gestational hypertension, well controlled preeclampsia without severity data, gestational diabetes mellitus controlled with diet	
Ш	Patient with a severe systemic disease	Severe preeclampsia, gestational diabetes mellitus with complications or insulin requirements, atherothrombotic disease requiring anticoagulation	
IV	Patient with severe systemic disease that compromises life	Severe preeclampsia complicated by HELLP syndrome or other adverse events, peripartum cardiomyopathy with LVEF < 40%, uncorrected or decompensated congenital or acquired heart disease	
V	Dying patient who is not expected to survive without the operation	Uterine rupture	
VI	Brain dead patient potential organ donor	None	

Letter E: must be added to describe the case as an emergency

Letter G: must be added to indicate that it is a pregnant woman

Table 3. Current definitions and approved examples of the 2020 American Society of Anesthesiologists classification of physical

load. Glycemic control with serial blood samples for continuous insulin therapy is adequate; glycosuria is not recommended as the therapeutic guide.

The placenta produces corticotropin-releasing hormone that increases corticotropin and cortisol production, making it impossible to identify whether their elevated values in a serum or saliva sample correspond to a normal result or a pathological state. ¹

PREOPERATIVE ASSESSMENT IN PREECLAMPSIA-ECLAMPSIA

Preeclampsia-eclampsia is the hypertensive state that most frequently complicates human pregnancy. It appears from week 20 onwards, in the peripartum stage or in the puerperium. The cut-off point to document arterial hypertension in pregnancy is ≥140/90 mmHg, mild preeclampsia includes values \geq 140/90 mmHg, but <160/110 mmHg without alterations in maternal organs. Severe preeclampsia implies blood pressure ≥160/110 mmHg or less, but always accompanied by changes in the brain, lungs, heart, kidneys, liver, or coagulation system. Eclampsia is characterized by the appearance of generalized tonic-clonic seizures in a patient with preeclampsia whose seizure cause cannot be labeled to a different disease. HELLP syndrome involves hemolysis, elevated liver enzymes, and thrombocytopenia complicating severe preeclampsia or eclampsia.

The recommendation of the experts is that the management of severe preeclampsia, eclampsia and HELLP syndrome should be carried out in the Intensive Care Unit of a tertiary care center. Initially, the therapeutic is of the medical order to achieve maternal stabilization and interrupt the pregnancy to offer the best conditions for the birth of the fetus.

In our setting, it has been proposed that maternal stabilization should include nine goals: 1) mean arterial pressure ≤ 95 mmHg, 2) central venous pressure 6 to 10 cm of water, 3) uresis 1.5 to 2

ml/K/hour without diuretic, 4) glycemia <160 mg/dL, 5) plasmatic colloid osmotic pressure 24 ± 2 mmHg, 6) arterial pH 7.37 to 7.44, 7) hemoglobin 10 to 14 g/dL, 8) \geq 100,000 platelets/ μ L, and 9) absence of seizures. Anesthesia and surgery are much safer if blood pressure control (\leq 140/90 mmHg) is achieved, uresis restored without the use of a diuretic agent (1.5 to 2 mL/K/hour), hemoglobin level greater than 10 g/dL and platelet count \geq 50,000 platelets/ μ L.

The termination of the pregnancy should be scheduled to the extent possible except in cases of a real emergency. Neuraxial anesthesia and cesarean section are the most frequently used methods due to their few systemic and fetal effects and due to technical safety and better bleeding control, respectively. Postpartum management in a critical care ward with the participation of a multidisciplinary team is necessary to improve maternal and fetal outcomes.³

OBSTETRIC SURGERY DURING PREGNANCY

During pregnancy, obstetric surgery can wait and be performed after the end of the pregnancy. Emergency conditions must be analyzed individually, always assessing the risk-benefit. Regarding the causes of obstetric surgery, the following distribution has been reported: adnexal tumors 10 to 50%, ectopic pregnancy 10 to 15%, cervical neoplasia and need for biopsy 1 to 25%, and biopsy for breast cancer 0.3%. Minor, but equally important procedures such as cervical cerclage and amniocentesis should be performed if fully warranted.

The evaluation of an anesthetic procedure and the type of surgery are the responsibility of a multidisciplinary team that must include an expert in emergency obstetric surgery to decide the appropriate moment and the safest technique. Informed consent with the authorization of the patient or the family member directly responsible is a necessary requirement for anesthesia and surgery, respectively. 4

Drugs	Fetal effect	Recommendation
Sedatives or hypnotic	Cardiac depression "in utero"	Avoid high doses
Propofol	·	
Ketamine		Alert for neonatal
Diazepam		ventilatory support
Anesthetic gases	Spontaneous abortion	Avoid it or use low doses
Nitrous oxide	Nitrous oxide Possible impairment of neural development	
Muscle relaxants	They do not cross the placental barrier	Can be used
Opioids	Congenital heart disease	Avoid them
	Neonatal respiratory depression	
	Neonatal abstinence syndrome	
Non-steroidal anti-	First trimester miscarriage	Avoid them
inflammatories	Second trimester congenital cryptorchidism	
	Kidney injury In utero and neonatal kidney injury	
	Constriction of the ductus arteriosus	
Aspirin	No teratogenic effect has been shown	Can be used
	An increased risk of intrapartum bleeding has not been	
	demonstrated	
Local anesthetics	Proven teratogenic effect	Avoid them
Cocaine	Placental abruption	
Vasopressors	Increased maternal blood pressure	Can be used
Ephedrine		
Phenylephrine		
Ionizing radiation	Proven teratogenic effect	Avoid them, if necessary
	No effect with dose ≤5 rad	assess the risk-benefit
	Mental retardation with high doses between 8 to 15	
	weeks gestational	
	Lower risk of leukemia	
Radioactive isotopes with	Fetal and neonatal abnormal thyroid function	Contraindicated in
Iodine		pregnancy
Radiotracers for diagnostic studies	Possible deterioration of fetal organs	Avoid them

Table 4. Fetal risk of drugs administered during anesthesia.

NON-OBSTETRIC SURGERY DURING PREGNANCY

procedures Minimally invasive and nonobstetric surgery should be deferred until the end of the pregnancy unless the patient's life is in danger. The prevalence of non-obstetric surgery during pregnancy is 1 to 10 cases per 1,000 pregnancies. The most frequent causes of non-obstetric surgery during pregnancy are: non-abdominal trauma 4%, major abdominal trauma 2.5%, acute cholecystitis 1.18%, appendicitis 1.05% and intestinal obstruction 0.3%. Cancer surgery, neurosurgery, and cardiac surgery have also been reported. Minimally invasive procedures include endoscopies such as colonoscopy, cardiac catheterization, and interventional cerebral catheterization. ⁴In all cases, preoperative assessment should be requested.

In 2017 Balinskaite et al. ⁵ estimated the risk of adverse effects to pregnancy following nonobstetric surgery in a retrospective cohort of 6.5 million of pregnant patients seen from April 1, 2002 to March 31, 2012 in United Kingdom hospitals. They found an increased risk of adverse birth outcomes, although the attributable risk was generally low. The authors reported that for every 287 surgical operations 1 fetal death occurred, for every 31 operations 1 premature

birth was associated, for every 39 operations a fetus with low birth weight occurred, for every 25 operations there was the need for 1 additional cesarean section and by every 50 interventions there was 1 case with a long hospital stay.

Additionally, Fu et al. ⁶ studied 23,721 pregnancies whose data were contained in a database of hospitals in Taiwan, China and identified 4,747 patients undergoing non-obstetric surgery. The authors found higher risks of prematurity, low birth weight, low Apgar scores, neonatal and infant death, longer hospital stay, and higher medical expenses than those pregnant women without surgery. Furthermore, surgery in the third trimester was associated with a higher rate of fetal effects than surgery performed in the first trimester.

When surgery is required, the mandatory recommendation is that an obstetrician should be part of the surgical team. ⁷ In general, the preoperative assessment is similar regardless of whether the woman is pregnant, but it should be considered that the physiologic changes of pregnancy may increase anesthetic and surgical risk. Special management considerations include pregnancy-related measures, laboratory changes, timing of surgery, choice of anesthetic method, intubation precautions, patient positioning, identification of blood group and Rh

factor, having units of blood in reserve from the preoperative period, maternal and fetal monitoring, and thromboembolism prophylaxis. 8

Emergency surgery should never be denied to a pregnant woman if necessary and should not be delayed regardless of the gestational trimester because this may negatively affect the outcome of the pregnant woman and fetus. When it comes to a necessary but elective surgery, the recommendation is to perform it 6 weeks postpartum. 9

PREOPERATIVE RISK SCALES

To determine the preoperative risk in pregnant women requires the integration of risk scoring scales, the identification of individual factors, and the application of clinical judgment. The most important classifications are shown in **Table 1**. As can be seen, not all the scales include pregnancy data to calculate the score for their evaluation, but all the classifications can be applied to the population of pregnant women once they are applies the appropriate clinical judgment according to the needs of the case. The patient can benefit from the complementary application of various scales.

Goldman scale

In 1977, Goldman et al. ¹⁰ introduced a multifactorial cardiac risk scale in patients who were candidates for non-cardiac surgery. The scale includes classes I, II, III and IV of cardiological risk according to the score of pre-established clinical and laboratory parameters. The classes are correlated with the percentage of mortality. When an evaluation is issued with this scale, the evaluation parameters must be transposed to the condition of the pregnant patient, since the original scale and the modifications that have been proposed do not include this group of patients. Clinical judgment is necessary to properly classify them.

ACC/AHA scale

The American College of Cardiology and the American Heart Association (ACC/AHA) issued guidelines for preoperative cardiologic evaluation in cases requiring non-cardiac surgery in 2007 and 2014. The committees made the same recommendations for pregnant and non-pregnant patients. The scale awards points and concludes in three categories: High risk (reported risk of cardiac death or non-fatal myocardial infarction frequently greater than 5%), Intermediate risk (reported risk of cardiac death or non-fatal myocardial infarction generally 1 to 5 %) and Low risk (reported risk of cardiac death or non-fatal myocardial infarction generally less than 1%) which

includes patients who generally do not require further preoperative cardiac testing. 11,12

Revised Cardiac Risk Index (Lee)

This is a scale for predicting the occurrence of cardiac complications in non-cardiac surgery. It was proposed by Lee et al. ¹³ after studying 4,315 patients

than 50 years who underwent major noncardiologic surgery. Major cardiac complications that appeared after surgery were evaluated. The patients studied by Lee et al. ¹³ cannot be considered an average cohort of "non-cardiovascular surgery surgical patients" since they included a large number of patients undergoing orthopedic surgery and excluded neurosurgery patients. However, the area under the ROC curve of the data set used for validation is 0.81, which indicates that the index has a good capacity to discriminate between patients with and without risk of serious cardiac events. The index has four categories: class I with 0 risk factors corresponds to a 0.4% probability of complications, class II with 1 risk factor 0.9%, class III with 2 risk factors 6.6% and class IV with 3 or more risk factors. risk 11%.

CARPREG II scale

In 2001, Siu et al. ¹⁴ conducted a multicenter prospective study of pregnancy outcomes in women with heart disease called CARPREG. The authors found a significant percentage of cardiac and neonatal complications despite the necessary obstetric and cardiology care. They concluded that maternal cardiac risk could be predicted using a risk index. In 2018, Silversides et al. ¹⁵ published the results of the CARPREG II study and proposed a predictive index of adverse cardiac events in women with heart disease and pregnancy. **Table 2**

NYHA functional classification

This is a scale proposed by the New York Heart Association (NYHA) used as a method for the functional classification of patients with heart failure. It was proposed in 1928 and revised several times, the last in 1994. It designates 4 classes (I, II, III and IV) based on the limitations in the patient's physical activity caused by cardiac symptoms. Class I: without limitation. Regular physical activities do not cause dyspnea, tiredness, or palpitations. Class II: slight limitation of physical activity. The patient is well at rest, regular physical activity causes dyspnea, tiredness, palpitations or angina. Class III: marked limitation of physical activity. The patient is well at

rest, but minor activities cause symptoms. Class IV: incapacity for any physical activity without symptoms. The symptoms are present even at rest. With any activity they increase.

To increase the objectivity of the classification, the four 4 classes have been described as A, B, C and D since 1994. The assessment is determined through the interpretation of the electrocardiogram, stress test, X-rays, echocardiogram and special images. Class A: No objective evidence of cardiovascular disease. Class B: Objective evidence of minimal cardiovascular disease. Class C: Objective evidence of moderately severe cardiovascular disease. Class D: Objective evidence of severe cardiovascular disease. However, this new classification is also made based on appreciation judgments since there are no criteria for the use of the terms "minimal", "moderately severe" and "severe" disease. 16

ASA Physical status classification

In 1941, the American Society of Anesthetists, an organization that later became the American Society of Anesthesiologists (ASA) developed a sixcategory classification for patients requiring anesthesia and surgery. 17 The ASA fitness classification was further modified into five categories in 1961 and remains in use today with some changes. Its application in the obstetric population has caused special controversy because the physiological changes of pregnancy make pregnant women different from non-pregnant women, despite the fact that pregnancy is not considered a disease. For this reason, no pregnant patient should be staged as class I. The woman with an uncomplicated pregnancy is assigned as ASA class 2 because gestational changes can cause a problem even when the pregnancy is not a disease. The 2020 version already includes the adult population, pediatric patients and pregnant women.

Table 3 shows the classification with the examples of obstetric cases to guide the evaluator. The letter E added to each class stands for emergency surgery. An emergency is defined as existing when the delay in the treatment of the patient threatens his life or the possibility of the loss of any part of the body. Barbeito et al. ¹⁸ proposed adding a "G" (gravid) to each class in a similar way to adding an "E" to indicate that the patient is pregnant. With these simple markings, inconsistencies have been reduced and communication between evaluators has improved. ¹⁸

Caprini scale

Caprini et al. ¹⁹ introduced in 2001 a stratification scale to prevent the risk of thromboembolic disease in non-surgical and surgical patients. The scale includes situations that may occur

for the open population, in high-risk groups and during pregnancy such as transfusions, bed rest for more than 72 hours, surgery time for more than 2 hours, pregnancy or childbirth in the previous month, death fetus, recurrent miscarriage, prematurity due to preeclampsia, fetus with intrauterine growth restriction, endoscopic surgery longer than 45 minutes, central venous access with a catheter, previous thromboembolic disease or pulmonary embolism, and a history of cerebrovascular event. A total risk factor score is calculated and patients are classified into 5 risk levels; "very low risk" (0-2 points), "low risk" (3-4 points), "moderate risk" (5-6 points), "high risk" (7-8 points) and "very high risk" (>8 points).

Detsky index

Detsky et al. 20 described in 1986 a multifactorial cardiac risk index to evaluate patients undergoing non-cardiac surgery. The index is a modified version of the index previously generated by Goldman et al. ¹⁰ Includes coronary parameters supported by the recommendations of the Canadian Cardiovascular Society, data on the heart pump, aortic valve, atrial and ventricular arrhythmias, urea nitrogen, creatinine, potassium, bicarbonate and arterial blood gas values, chronic liver disease, immobility prolonged non-cardiac cause, age greater than 70 years and urgent surgery. The total points awarded serve to identify the patient in one of the preestablished categories: class I from 0 to 15 points. class II from 20 to 30 points and class III with more than 30 points. The Detsky index does not specifically include the condition of the pregnant patient.

Wells scale

The Wells Index was introduced in 1997 ²¹ to estimate the probability of suffering from deep vein thrombosis. It awards points (1, 1.5, and 3) to each of seven preset parameters related to clinical deep vein thrombosis, pulmonary thromboembolism, exploratory findings, cancer, and hemoptysis. The probability is low when the score is <2, intermediate probability from 2 to 6, and high probability when it is >6. The index rules out disease when the estimated risk is low and is most useful for estimating the risk of proximal vein thrombosis.

Geneva scale (Geneva Score)

The Geneva Score is a clinical probability index used to determine the pretest probability of pulmonary thromboembolism based on the evaluation of a series of patient risk factors and some clinical findings. ²² It has the same usefulness as the Wells scale and depends less on the knowledge of the doctor

applying the prediction rule. The Geneva scale has been subsequently revised and simplified, so that the latest version seems to have the same diagnostic utility as the original version. ²³ It uses eight variables to classify the probability of pulmonary thromboembolism into three categories: low probability (0 to 3 points), intermediate probability (4 to 10 points), and high probability (≥11 points).

ANESTHESIA DRUGS IN PREGNANCY

During pregnancy, all medications must be checked against the drug classification system issued by the Food and Drug Administration (FDA) of the United States of America in 2014: ²⁴ Category A: controlled studies have shown no risk, Category B: no evidence of human fetal risk, Category C: risk cannot be ruled out, Category D: positive evidence of human fetal risk exists, Category X: contraindicated in the pregnancy.

In general, no anesthetic drugs or drugs commonly used in anesthesia are listed as teratogens in humans, but they have been associated with maternal effects that impair fetal well-being or with direct in utero adverse effects that result in spontaneous abortion, preterm delivery, and death.

Table 4 shows the fetal risk of drugs administered in anesthesia and surgery during pregnancy.

Conclusion

The preoperative assessment in the pregnant patient belongs to the face-to-face clinical territory. It is based on a directed history, exploratory findings, basic preoperative laboratory studies, an electrocardiogram, a chest x-ray, and fetal evaluation by the obstetrician. Special exams are restricted, they are only performed in special cases. The selection of the scales to issue the preoperative risk must be individualized in each case applying broad clinical criteria, always considering the gestational changes, the current problem, the possible complications and the comment that the anesthetic-obstetric team expects to follow the recommendations and start a procedure.

Conflicts of interests

None declared by the authors.

References

1. Auron M, Duran Castillo MY, Dueñas García OF. Perioperative management of pregnant women undergoing nonobstetric surgery. Cleve Clin J Med. 2021;88(1):27-34.

DOI:10.3949/ccjm.88a.18111.

2. American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2003;98(5):1269–1277. DOI:10.1097/00000542-200305000-00032

- 3. Vázquez-Rodríguez JG, Herrera-Escobedo I. Metas del tratamiento de pacientes con preeclampsia, previo al parto, en una unidad de cuidados intensivos. Ginecol Obstet Mex. 2020;88(1):14-22.
- https://doi.org/10.24245/gom.v88i1.3398
- 4. Newton ER. Surgical problems in pregnancy. Glob Libr Women's Med. (ISSN:1756-2228) 2008. DOI:10.3843/GLOWM.10191
- 5. Balinskaite V, Bottle A, Sodhi V, Rivers A, Bennett PR, Brett SJ, et al. The risk of adverse pregnancy outcomes following nonobstetric surgery during pregnancy. Ann Surg. 2017;266:260–266. DOI: 10.1097/SLA.000000000000001976
- 6. Fu PH, Yu CH, Chen YC, Chu CC, Chen JY, Liang FW. Risk of adverse fetal outcomes following nonobstetric surgery during gestation: a nationwide population-based analysis. BMC Pregnancy and Childbirth. 2022;22:406. https://doi.org/10.1186/s12884-022-04732-w
- 7. Nonobstetric surgery during pregnancy. ACOG Committee Opinion No. 775. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2019;133(4):e285–e286.
- 10.1097/AOG.0000000000003174
- 8. McKenzie H, Pulley DD. The pregnant patient: Assessment and perioperative management. Anesthesiol Clin. 2016;34(1):213-222.
- DOI:10.1016/j.anclin.2015.10.016.
- 9. Haggerty E, Daly J. Anaesthesia and non-obstetric surgery in pregnancy. BJA Educ. 2021;21(2):42–43. DOI:10.1016/j.bjae.2020.11.002
- 10. Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297(16):845-50. DOI:10.1056/NEJM197710202971601.
- 11. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof E, Fleischmann KE, et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery) developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Am Coll Cardiol 2007.116(17):e418-e499.
- 10.1161/CIRCULATIONAHA.107.185699.
- 12. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(24):e278–e333.

DOI:10.1161/CIR.0000000000000106

13. Lee TH, Marcantoniocon ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, et al: Derivation

- and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100(10):1043-1049 https://doi.org/10.1161/01.CIR.100.10.1043
- 14. Siu SC, Sermer M, Colman JM, Alvarez N, Mercier LA, Morton BC, et al. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001;104(5):515-521. DOI: 10.1161/hc3001.093437.
- 15. Silversides CK, Grewal J, Mason J, Sermer M, Kiess M, Rycher V, et al. Pregnancy outcomes in women with heart disease: the CARPREG II Study. J Am Coll Cardiol. 2018;71(21):2419–2430. DOI: 10.1016/j.jacc.2018.02.076
- 16. Caraballo C, Desai NR, Mulder H, Alhanti B, Wilson FP, Fiuzat M, Felker GM, et al. Clinical implications of the New York Heart Association classification. J Am Heart Assoc. 2019;8(23):e014240. DOI: 10.1161/JAHA.119.014240
- 17. Saklad M. Grading of patients for surgical procedures. Anesthesiology. 1941;2:281–284. http://journals.lww.com/anesthesiology/toc/1941/05000.
- 18. Barbeito A, Muir HA, Gan TJ, Reynolds JD, Spahn T, White WD, et al. Use of a modifier reduces inconsistency in the American Society of Anesthesiologists Physical status classification in parturients. Anesth Analg. 2006;102(4):1231–1233. DOI: 10.1213/01.ane.0000198564.59290.ee
- 19. Caprini JA, Arcelus JI, Reyna JJ. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease. Semin Hematol. 2001;38(2 Suppl 5):12-19. DOI: 10.1016/s0037-1963(01)90094-0.
- 20. Detsky AS, Abrams HB, Forba4th N, Scott JG, Hilliard JR. Cardiac assessment for patients undergoing noncardiac surgery. A multifactorial clinical risk index. Arch Intern Med. 1986;146(11): 2131-2134.
- DOI: 10.1001/archinte.1986.00360230047007
- 21. Wells PS, Anderson DR, Bormanis J, Guy F, Mitchell M, Gray L, et al. Value of assessment of pretest probability of deep-vein thrombosis in clinical management. The Lancet. 1997;350(9094):1795-1798. DOI: 10.1016/S0140-6736(97)08140-3
- 22. Wicki J, Perneger TV, Junod AF, Bounameaux H, Perrie A. Assessing clinical probability of pulmonary embolism in the emergency ward; a simple score. Arch Intern Med. 2001;161(1):92-97. DOI: 10.1001/archinte.161.1.92.
- 23. Le Gal G, Righini M, Roy PM, Sanchez O, Aujesky D, Bounameaux H, et al. Prediction of pulmonary embolism in the emergency department. The Revised Geneva Score. Ann Intern Med. 2006;144(3):165-171 DOI: 10.7326/0003-4819-144-3-200602070-00004.
- 24. FDA News Release. FDA issues final rule on changes to pregnancy and lactation labeling information for prescription drug and biological products. Silver Spring (MD): U.S. Food and Drug Administration. 2014. https://www.fda.gov/drugs/labeling-information-drug-products/pregnancy-and-lactation-labeling-drugs-final-rule

Juan Gustavo Vázquez Rodríguez Intensive Care Unit High Specialty Medical Unit Gynecology and Obstetrics Hospital No. 3. National Medical Center "La Raza" Mexican Institute of Social Security Mexico City, Mexico.